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ADAM17 limits the expression of CSF1R on murine
hematopoietic progenitors
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All-lymphoid progenitors (ALPs) yield few myeloid cells in vivo, but readily generate such
cells in vitro. The basis for this difference remains unknown. We hypothesized that ALPs limit
responsiveness to in vivo concentrations of myeloid-promoting cytokines by reducing expres-
sion of the corresponding receptors, potentially through posttranscriptional mechanisms.
Consistent with such a mechanism, ALPs express higher levels of CSF1R transcripts than
their upstream precursors, yet show limited cell-surface protein expression of colony-stimu-
lating factor 1 receptor (CSF1R). All-lymphoid progenitors and other hematopoietic progen-
itors deficient in A disintegrin and metalloproteinase domain 17 (ADAM17), display elevated
cell surface CSF1R expression. ADAM17–/– ALPs, however, fail to yield myeloid cells upon
transplantation into irradiated recipients. Moreover, ADAM17–/– ALPs yield fewer macro-
phages in vitro than control ALPs at high concentrations of macrophage colony stimulating
factor. Mice with hematopoietic-specific deletion of ADAM17 have normal numbers of myeloid
and lymphoid progenitors and mature cells in vivo. These data demonstrate that ADAM17
limits CSF1R protein expression on hematopoietic progenitors, but that compensatory mech-
anisms prevent elevated CSF1R levels from altering lymphoid progenitor potential. Copy-
right � 2015 ISEH - International Society for Experimental Hematology. Published by
Elsevier Inc.
Hematopoietic stem cells traverse through a series of devel-
opmental intermediates, termed progenitors, en route to
lineage commitment and maturation [1]. As differentiation
progresses, these progenitors lose their ability to undergo
self-renewing divisions. At specific developmental branch
points, progenitors also lose their ability to generate spe-
cific subsets of mature blood lineages. At each of these
branches, these progenitors are considered to be committed
to the remaining blood lineages that they can still generate.

Complicating the definition and analysis of lineage
commitment, in vivo assays can yield different results from
in vitro experiments [2]. For example, common-lymphoid
progenitors (CLPs) or all-lymphoid progenitors (ALPs)
that yield primarily lymphocytes and dendritic cells in vivo
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can readily generate macrophages and neutrophils in vitro
with high efficiencies [2–10]. These data demonstrate that
CLPs and ALPs have not epigenetically silenced their
myeloid programs [11], yet myeloid cells are infrequently
generated from these progenitors under physiologic condi-
tions [4]. Thus, there is substantial disagreement on whether
CLPs and ALPs should be considered lymphoid-committed.

As highlighted by this disagreement, the mechanisms by
which lymphoid progenitors limit myeloid output in vivo
remain incompletely understood. One possibility is that
lymphoid progenitors home to distinct niches in vivo in
which local concentrations of myeloid cytokines are low
[12,13]. Another non–mutually exclusive possibility is
that ALPs reduce the expression of myeloid cytokine
receptors such that they are unresponsive to the in vivo con-
centrations of such factors. Yet by providing excess
amounts of myeloid lineage-promoting cytokines in vitro,
lymphoid progenitors can still generate macrophages and
neutrophils. Indeed, ectopic expression of certain cytokine
receptors allows for robust myeloid cell production by
lymphoid progenitors [14]. Endogenous cytokine receptor
expression can be regulated by both transcriptional and
ematology. Published by Elsevier Inc.
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posttranscriptional mechanisms. For example, A disintegrin
and metalloproteinase domain 17 (ADAM17) can cleave
colony stimulating factor 1 receptor (CSF1R) an essential
and instructive cytokine receptor for macrophage colony
stimulating factor (M-CSF), which mediates macrophage
commitment and homeostasis [15–19].

ADAM17 belongs to a family of metalloproteases with
broad target specificities and essential roles in many biolog-
ical processes. It is best known for its role in cell-intrinsic
processing of tumor necrosis factor a (TNFa) to its secreted
form, and is often referred to as TNFa-converting enzyme
(TACE) [20,21]. However, many studies have identified
other ADAM17 targets in addition to TNFa, including
CSF1R [18]. Although the role of ADAM17 in mature
myeloid cells and responses to bacterial endotoxin chal-
lenge has been studied [22–26], to our knowledge there
have been no reports describing its function during hemato-
poietic development. Given similar roles in other cell types,
we hypothesized that ADAM17 limits CSF1R expression
on lymphoid progenitors, thereby preventing macrophage
and granulocyte production in vivo. Here we demonstrate
that ALPs express CSF1R transcripts, and that ADAM17
does indeed limit cell surface expression of CSF1R on
ALPs and other hematopoietic progenitors. Yet despite its
role in limiting CSF1R on the surface of ALPs, ADAM17
is not required for preventing myeloid cell production by
lymphoid progenitors in vivo.
Materials and methods

Mice
We purchased ADAM17fl/fl [22], Vav1-iCre [27], C57BL/6, and
B6.SJL mice from The Jackson Laboratory (Bar Harbor, ME)
and subsequently housed and maintained them in our animal care
facility. The genotype of ADAM17-knockout mice in all experi-
ments was ADAM17fl/fl Vav1-iCreþ, whereas wild-type mice were
ADAM17fl/þ Vav1-iCre- or ADAM17fl/fl Vav1-iCre-. All studies
were carried out according to the Institutional Animal Care and
Use Committee at Washington University (St. Louis, MO).

Microarray and quantitative real-time polymerase chain
reaction
CSF1R expression levels were analyzed for lymphoid-primed multi-
potent progenitors (LMPPs) and ALPs from previously published
microarrays [5]. For quantitative real-time polymerase chain reaction
(PCR) analysis, cellsweredouble-sorted intoTRIzol reagent (Invitro-
gen,Carlsbad,CA) using aBDFACSAria (BDBiosciences, San Jose,
CA).SuperScript III FirstStrandKit (Invitrogen)wasused togenerate
cDNA using random hexamers, per the manufacturer’s instructions.
SybrGreen PCR master mix (Applied Biosystems, Foster City, CA)
was used for real-time PCR assays per the manufacturer’s instruc-
tions. The ABI 7000 Sequence Detection System (Applied Bio-
systems) was used to quantify expression. Primer sequences were:
CSF1R, 50-ACACGCACGGGCCACCATGAA-30 and 50-GCAT
GGACCGTGAGGATGAGGC-30; and GAPDH, 50-GGCAAA
TTCAACGGCACAGT-30 and 50-GATGGTGATGGGCTTCCC-30.
M-CSF enzyme-linked immunosorbent assay
Epiphyses were removed, and dissected femurs from wild-type
mice were flushed with 1 mL phosphate-buffered saline (PBS).
Cells were pelleted, and M-CSF levels were quantified from
bone marrow supernatant or blood serum using a mouse M-CSF
enzyme-linked immunosorbent assay (ELISA) kit following the
manufacturer’s instructions (Sigma-Aldrich). Bone marrow M-
CSF concentrations were calculated by dividing the total amount
of M-CSF in the bone marrow supernatant by the marrow volume
of a mouse femur, estimated to be 9.4 mL. This estimate is based
upon the approximations that a mouse femur is a normal cylinder,
the cross-sectional marrow radius r is 0.46 mm [28], the length l is
15 mm [28], and the volume can be calculated as pr2l.

Flow cytometry and cell sorting
Staining buffer consisted of 2% adult bovine serum (Hyclone, Lo-
gan, UT) or PBS with 1 mmol/L ethylenediaminetetraacetic acid.
Dead cells were gated out using propidium iodide (Sigma-Al-
drich). Cells were acquired and sorted on the FACSAria (BD Bio-
sciences) or analyzed on a LSRII (BD Biosciences). Data were
analyzed using FlowJo software (TreeStar, Ashland, OR). For a
list of antibodies used in the experiments, see Supplementary
Table E1 (online only, available at www.exphem.org).

In vitro differentiation assay
We double-sorted 500 ALPs into culture media that consisted of
10% Defined fetal bovine serum (Hyclone) in Dulbeco’s
Modified Eagle Medium: Nutrient Mixture F12 (DME-F12) þ
10 mmol/L Hepes (Sigma Aldrich) and supplemented with non-
essential amino acids (Lonza, Basel, Switzerland), sodium pyru-
vate (Lonza), penicillin/streptomycin (Sigma-Aldrich), Glutamax
(Invitrogen), and 50 mmol/L 2-mercaptoethanol (Invitrogen). We
added M-CSF (Peprotech, Rocky Hill, NJ) at the indicated con-
centration. Cells were cultured for 4 days before staining and
flow cytometric analysis on a BD LSRII. To quantify total
numbers of cells, software acquisition and recording was initiated
before the sample was loaded and continued until the sample was
completely consumed, and no additional live events were
observed. Viability was quantified by the percentage of cells incor-
porating propidium iodide.

In vivo differentiation assay
We double-sorted 5,000 ADAM17 wild-type or knockout ALPs
(CD45.2þ) into PBS and then injected into each 800 cG–irradiated
B6.SJL (CD45.1þ) recipient mice via retro-orbital injection. Ten
days postinjection, bone marrow and spleens were harvested and
mechanically dissociated in staining buffer. Cells were stained
and analyzed as described in Results.

Results
Cytokine signaling in hematopoietic progenitors can play an
instructive role in directing fate decisions [14,17,19,29].
Thus, we hypothesized that lymphoid progenitors display
reduced expression of myeloid-promoting cytokine recep-
tors relative to their uncommitted multipotent precursors.
To test this hypothesis, we examined global gene expression
profiles of ALPs, which generate only lymphocytes in vivo
[5], and LMPPs, which can generate macrophages in
vivo through CSF1R-expressing progeny [5,30–32].
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Figure 1. ALPs express low levels of CSF1R and differentiate into monocytes in vitro with exogenous M-CSF administration. (A) Microarray data

obtained from Inlay et al. [5] showing log2 expression values for CSF1R. Signals from probeset 1419872_at are shown. Three biologically distinct

samples were analyzed for each population. (B) Quantitative real-time PCR analysis of CSF1R for LMPPs, ALPs, and CMPs. CSF1R expression was

normalized to GAPDH expression. Data are representative of 2 independent experiments. (C) Flow cytometry plots show the surface levels of CSF1R

expressed on LMPPs, ALPs, and CMPs. These data are representative of three independent experiments. (D) ELISA analysis of BM and serum

M-CSF levels. Femurs were flushed with 1 mL of PBS, levels of M-CSF were quantified in the supernatant, and BM concentrations were estimated

assuming a femur volume of 9.4 mL (see Materials and Methods for details). Data are cumulative from two independent experiments. (E) Flow

cytometric analysis of ALP output. We double-sorted 500 ALPs or CMPs and cultured them in the presence of M-CSF for 4 days. Flow cytometric

plots in the left panel depict representative data from ALP and CMP cultures. Values within the plots depict the percentage of F4/80þCD11bþ mac-

rophages generated. Column graphs in the right panel show cumulative data for the absolute number or frequency of macrophages or the frequency of

viable cells. Data are inclusive of four independent experiments and represent mean values 6 SEM. *p # 0.05, calculated by Student’s unpaired, two-

tailed t test. BM 5 Bone marrow.
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Figure 3. ADAM17-deficient ALPs do not produce monocytes in vivo. (A) Flow cytometric analysis of ALP output in vivo. We double-sorted 5,000 ALPs

from ADAM17 wild-type or knockout mice. Cells were injected into sublethally irradiated congenic recipients. Ten days postinjection, spleens were har-
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Unexpectedly, the expression of CSF1R, which promotes
monocyte and macrophage development [15], was increased
in ALPs relative to LMPPs (Fig. 1A). This increase was also
observed through quantitative real-time PCR analysis
(Fig. 1B). Thus, ALPs express more CSF1R transcripts
than do LMPPs, but less than do CMPs (Fig. 1B).

Protein levels of CSF1R can be regulated through several
posttranscriptional mechanisms [33]. Therefore, increased
transcript levels may not strictly correlate with increased
cell surface protein levels or responsiveness to cytokines.
To test cell surface expression of CSF1R in LMPPs and
ALPs, we performed flow cytometric analysis. On ALPs,
CSF1R surface expression was low, similar to that seen in
LMPPs and markedly less than that observed in CMPs
(Fig. 1C; gating strategies shown in Supplementary
Figure E1, online only, available at www.exphem.org).
Thus, ALPs use posttranscriptional mechanisms to limit
CSF1R expression.

We hypothesized that the diminished levels of surface
CSF1R on ALPs would render these cells insensitive to
physiologic concentrations of M-CSF. To quantify the
endogenous levels of M-CSF, we performed ELISA ana-
lyses. These data demonstrated that the bone marrow
M-CSF concentration is w2 ng/mL (Fig. 1D).

http://www.exphem.org
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Interestingly, M-CSF was undetectable in the serum of
these same animals (Fig. 1D). These data demonstrate
that M-CSF levels are locally restricted. Local concentra-
tions of M-CSF could potentially also vary greatly within
distinct marrow regions from the average value of w2 ng/
mL. Thus, to determine whether the low levels of cell sur-
face CSF1R expression on ALPs would allow for macro-
phage development, we cultured purified ALPs in the
presence of a broad range of M-CSF concentrations. All-
lymphoid progenitors readily generated macrophages at
high concentrations (10 ng/mL) of M-CSF, but this output
fell sharply at lower doses (Fig. 1E). At all doses, CMPs
generated more macrophages than did ALPs, potentially
due to higher levels of surface CSF1R expression
(Fig. 1E). The proportion of macrophages generated was
comparable between ALPs and CMPs, with some small
differences at the lower concentrations of M-CSF
(Fig. 1E). Lowering the concentration of M-CSF led to a
progressive decline in viability, although CMPs were less
sensitive to death than were ALPs (Fig. 1E). These data
demonstrate that ALPs express relatively little cell surface
CSF1R despite transcription, and they robustly respond to
M-CSF only at high doses.

Previous studies have shown that the metalloprotease
ADAM17 can cleave CSF1R protein in activated macro-
phages [18]. We thus hypothesized that a similar mechanism
limits CSF1R expression in ALPs. To test this hypothesis,
we generated ADAM17fl/fl Vav1-iCre mice, which selec-
tively lack ADAM17 in the hematopoietic compartment
[24]. We then assessed ALPs and other progenitors for cell
surface CSF1R levels. Indeed, ALPs, along with granulo-
cyte macrophage progenitors, CMPs, and LMPPs, all
showed elevated expression of surface CSF1R (Fig. 2;
gating strategies shown in Supplementary Figure E1, online
only, available at www.exphem.org). These data demon-
strate that hematopoietic-intrinsic ADAM17 limits the
expression of CSF1R in vivo.
We next sought to determine the functional conse-
quences of ADAM17 deficiency on ALP behavior
in vivo. We purified ALPs from ADAM17fl/fl Vav1-Cre or
control littermates and transferred them into sublethally
irradiated recipients. For both wild-type and ADAM17-
deficient ALPs, mean splenic donor chimerism was
identical at 1.9% (data not shown), and B cells and den-
dritic cells were readily generated from ALPs of both ge-
notypes (Fig. 3A). However, we observed no evidence of
monocyte production by ADAM17-deficient ALPs
(Fig. 3A). At this same time point, CMPs readily generate
monocytes [31,34]. We cannot exclude the possibility that
ALPs generate mature cells such as monocytes with much
different kinetics than do CMPs. However, this possibility
seems unlikely, as both of these progenitors yield mature
dendritic cells with similar kinetics [34–36]. As monocytes
are commonly identified using CSF1R expression as a
marker, we were concerned that this strategy would not
be faithful for ADAM17-deficient monocytes. To address
this, we examined wild-type and ADAM17-deficient sple-
nocytes. Although ADAM17-deficient monocytes did
indeed express elevated levels of CSF1R and required
slightly different gates for quantification, they could still
be readily identified (Fig. 3B). A similar proportion of
wild-type and ADAM17-deficient monocytes expressed
lymphocyte antigen complex 6c (Ly6C), a marker of in-
flammatory monocytes, thus further validating the gating
strategy. Therefore, in this adoptive transfer system,
elevated levels of CSF1R are not sufficient to confer
in vivo myeloid potential to ALPs.

Because irradiation can alter in vivo concentrations of
cytokines and homing properties of progenitors [37–39],
we next sought to determine whether ADAM17 deficiency
led to any changes in the numbers of progenitors or mature
cells under steady-state conditions. Despite elevated surface
levels of CSF1R, no significant defects were observed in
the numbers of lymphoid or myeloid progenitors in

http://www.exphem.org
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ADAM17-deficient animals, aside from a modest reduction
in common dendritic-cell progenitors (Fig. 3C; gating stra-
tegies shown in Supplementary Figure E1, online only,
available at www.exphem.org). Similarly, no defects were
observed in the numbers of mature dendritic cells, mono-
cytes, or lymphocytes in the spleen (Fig. 3D) or bone
marrow (Fig. 3E), except for a slight increase in splenic
ADAM17–/– T-cell numbers (gating strategies shown in
Supplementary Figure E2, online only, available at www.
exphem.org).

To explore the basis for the lack of dramatic in vivo
effects of ADAM17 deficiency, we compared the in vitro
responsiveness of wild-type and ADAM17-/- ALPs to M-
CSF. Unexpectedly, ADAM17-deficient ALPs yielded
fewer macrophages in vitro than did wild-type ALPs at
the highest doses of M-CSF (Fig. 4), despite expressing
higher levels of CSF1R (Fig. 2). At lower M-CSF doses,
the numbers and frequencies of macrophages generated
were similar between wild-type and ADAM17-deficient
ALPs (Fig. 4). Overall viability was also similar between
genotypes at all doses of M-CSF (Fig. 4, bottom panel).
We cannot exclude the possibility that a distinct proteolytic
target of ADAM17 somehow prevents monocyte and
macrophage development. However, given that M-CSF is
the only cytokine included in these in vitro cultures, our
data suggest that excessive M-CSF signaling may either
prevent the differentiation of macrophages from lymphoid
progenitors or selectively kill those which have already
formed. Thus, negative feedback signaling through
CSF1R may prevent major changes from occurring
in vivo in ADAM17-deficient animals. This may also help
explain the modest reduction in ADAM17-deficient
common-dendritic cell progenitors (Fig. 3C), which already
express high levels of CSF1R, even in ADAM17-sufficient
animals [40,41]. Together, these data demonstrate that,
although ADAM17 limits CSF1R expression in progeni-
tors, it is not necessary for lymphoid lineage commitment
or myeloid-cell homeostasis under steady-state conditions.
Discussion
Fate decisions during hematopoietic differentiation are
regulated by complex interactions between cell-extrinsic
and cell-intrinsic cues. At certain intermediates, progenitor
cell differentiation in vivo is often more restricted than their
epigenetic profiles or in vitro potentials might predict
[2,11]. In these cases, it is likely that extrinsic factors
dictate cellular outcomes in vivo, either through instructive
actions or by selectively permitting the survival or prolifer-
ation of specific downstream lineages. By tuning their sen-
sitivities to these extrinsic factors, progenitors could
regulate outcomes in vivo.

We hypothesized that one way in which lymphoid pro-
genitors regulate their sensitivities to myeloid cytokines is
by ADAM17-mediated cleavage of CSF1R. Indeed,
CSF1R surface levels were significantly higher in
ADAM17–/– ALPs and other progenitors relative to their
ADAM17 fl/fl counterparts. Thus, it seemed reasonable to
expect that cells expressing elevated CSF1R levels would
increase macrophage or monocyte production in vivo. Con-
trary to our hypothesis, however, we observed no differ-
ences in ADAM17–/– ALP output in vivo compared with
controls, and there were no major differences in mature
cell subsets in the spleen or bone marrow. This may, in
part, be attributable to negative feedback inhibition of
CSF1R signaling, since ADAM17–/– ALPs generated rela-
tively few macrophages at the highest doses of M-CSF
in vitro compared with ADAM17 fl/fl ALPs.

The physiologic importance of elevated CSF1R tran-
scription in ALPs relative to LMPPs is unclear, as is the
latent myeloid potential of these cells. Lymphoid
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progenitors can alter their lineage output when exposed to
pathogen-associated molecular patterns, such as Toll-like
receptor ligands [42]. By maintaining a reservoir of
CSF1R transcripts, it is possible that ALPs can rapidly
contribute to emergency myelopoiesis upon systemic infec-
tion. Yet, under steady-state conditions, this monocyte and
macrophage potential is not utilized.

The full mechanisms by which lymphoid progenitors
restrict myeloid output in vivo thus remain unresolved. Spe-
cific lymphoid niches and consequent restriction of access to
M-CSF are possible explanations as towhyALPs generate so
fewmyeloid cells in vivo [13,43–45]. Our data are consistent
with this mechanism and justify further studies on special-
ized niches and cytokine gradients in vivo.
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Supplementary Table E1. Antibodies

Antibody Conjugate Clone Source

Flk2/CD135 PE PE N418 eBiosciences

CD27 APC LG.7F9 eBiosciences

CD115 APC AFS98 eBiosciences

PDCA-1 APC eBio10129C eBiosciences

c-kit/CD117 Pe-Cy7 2B8 eBiosciences

Gr-1 Pe-Cy7 RB6-8C5 eBiosciences

B220 APC0eFluo780 RA3-6B2 eBiosciences

CD11c PerCP-Cy5.5 N418 eBiosciences

CD16/32 PerCP-Cy5.5 93 eBiosciences

MHC class II Biotin M5/114.15.2 eBiosciences

CD11b PeCy7 M1/70 BD Biosciences

CD8 PE 53-67 BD Biosciences

Ly6G PE 1A8 Miltenyi Biotec

CD3 Purified/AlexaFluor 488 145-2C11 Bio X-Cell/Bhattacharya

CD3 Purified/Pacific Blue 145-2C11 Bio X-Cell/Bhattacharya

CD4 Purified/Pacific Blue GK1.5 Bio X-Cell/Bhattacharya

CD8 Purified/Pacific Blue 53-6.72 Bio X-Cell/Bhattacharya

CD11b Purified/Pacific Blue M1/70 Bio X-Cell/Bhattacharya

CD11c Purified/Pacific Blue N418 Bio X-Cell/Bhattacharya

CD19 Purified/Pacific Blue 1D3 Bio X-Cell/Bhattacharya

B220 Purified/Pacific Blue 6B2 Bio X-Cell/Bhattacharya

Terr119 Purified/Pacific Blue Terr119 Bio X-Cell/Bhattacharya

Gr-1 Purified/Pacific Blue 8C5 Bio X-Cell/Bhattacharya

Sca-1 Purified/Pacific Blue E13-161-70 Bio X-Cell/Bhattacharya

CD45.1 Purified/AlexaFluor 680 A20.1.7 Bio X-Cell/Bhattacharya

CD45.2 Purified/AlexaFluor 488 AL1-4A2 Bio X-Cell/Bhattacharya

Ly6D Purified/AlexaFluor 488 ThB Bio X-Cell/Bhattacharya

IL7Ra Purified/Biotin A7R34 Bio X-Cell/Bhattacharya

Streptavidin Qdot605 Invitrogen
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Supplementary Figure E1. Gating strategy for hematopoietic stem and progenitor cells. Lineage markers include CD3, CD4, CD8, CD11b, CD11c, CD19,

Gr-1, and Ter119. BLP 5 B-lymphocyte progenitor; CDP 5 common dendritic-cell progenitor; GMP 5 granulocyte-macrophage progenitor;

HSC 5 hematopoietic stem cell; Lin 5 Lineage; MDP 5 macrophage-dendritic cell progenitor.
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Supplementary Figure E2. Gating strategy for mature cells in the bone marrow and spleen. Gating strategy for (A) CD8aþ and CD8a- cDCs in the spleen,

(B) pDCs in the spleen, (C) monocytes in the bone marrow and spleen, (D) B cells in the bone marrow, and (E) T cells and B cells in the spleen.

cDC 5 Classical dendritic cell; mono 5 monocytes; neut 5 neutrophils; pDC 5 plasmacytoid dendritic cells.
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